Skip to content

VLSIFacts

Let's Program the Transistors

  • Home
  • DHD
    • Digital Electronics
    • Fault Tolerant System Design
    • TLM
    • Verification
    • Verilog
    • VHDL
    • Xilinx
  • Embedded System
    • 8085 uP
    • 8086 uP
    • 8051 uC
  • VLSI Technology
    • Analog Electronics
    • Memory Devices
    • VLSI Circuits
  • Interview
    • Interview Experience
    • Training Experience
    • Question Bank
  • Notifications
  • QUIZ
  • Community
  • Job Board
  • Contact Us

Tag: FPGA

Scaling the Pipelined Matrix Multiply Unit (MMU) for 4×4 Matrices in Verilog

Posted on December 4, 2025December 14, 2025 By vlsifacts No Comments on Scaling the Pipelined Matrix Multiply Unit (MMU) for 4×4 Matrices in Verilog

As AI models grow in complexity, efficient hardware for larger matrix operations becomes essential. In this article, we guide you through scaling a pipelined Matrix Multiply Unit (MMU) from 2×2 to 4×4 matrices in Verilog. You’ll learn about the architectural considerations, step-by-step implementation, and verification strategies needed to build high-performance, scalable MMUs for modern AI accelerators.

AI for VLSI, DHD

Design and Verification of Pipelined 2×2 Matrix Multiply Unit in Verilog

Posted on December 2, 2025December 13, 2025 By vlsifacts No Comments on Design and Verification of Pipelined 2×2 Matrix Multiply Unit in Verilog

Pipelining is a powerful technique for boosting the performance of digital circuits, especially in AI hardware. In this article, you’ll learn how to design a pipelined 2×2 Matrix Multiply Unit (MMU) in Verilog, step by step. We’ll show you how to implement pipelining for higher throughput, and guide you through verifying your design with a practical testbench.

AI for VLSI, DHD

Implementing and Verifying a Matrix Multiply Unit (MMU) in Verilog

Posted on December 1, 2025December 13, 2025 By vlsifacts No Comments on Implementing and Verifying a Matrix Multiply Unit (MMU) in Verilog

Matrix multiplication is at the heart of modern AI hardware, and building an efficient Matrix Multiply Unit (MMU) is a foundational skill for digital designers. In this article, we walk you through the implementation of a simple yet important 2×2 MMU in Verilog, and creation of a robust testbench for thorough verification. Whether you’re a student or a seasoned engineer, you’ll gain hands-on insights into designing reliable, scalable hardware for AI applications.

AI for VLSI, DHD

FPGA vs. Microcontroller

Posted on March 13, 2016June 17, 2025 By Dewansh No Comments on FPGA vs. Microcontroller

FPGA stands for Field Programmable Gate Array. They are programmable integrated circuits made up of a large number configurable logic blocks (CLBs), fixed function blocks and memory blocks which can be used to perform complex digital computations. The CLBs are the basic and most important unit of FPGA. CLBs are made up of Look Up…

Read More “FPGA vs. Microcontroller” »

DHD, Embedded System

Digilent Design Contest 12th Edition

Posted on November 6, 2015May 18, 2025 By vlsifacts No Comments on Digilent Design Contest 12th Edition

Do you love to play with FPGAs? If yes, then there is a golden opportunity to showcase your talent. Digilent Design Contest Europe Region has reached its 12th Edition, with a rich history behind, many interesting and cool projects along the years, many smart and competitive participants, as well as appreciated advisers. It is held in Cluj-Napoca, Romania,…

Read More “Digilent Design Contest 12th Edition” »

Notifications

Top Posts & Pages

  • NAND and NOR gate using CMOS Technology
  • Circuit Design of a 4-bit Binary Counter Using D Flip-flops
  • AND and OR gate using CMOS Technology
  • Truth Tables, Characteristic Equations and Excitation Tables of Different Flipflops
  • Understanding the 4-bit Ripple Carry Adder: Verilog Design and Testbench Explained

Copyright © 2025 VLSIFacts.

Powered by PressBook WordPress theme